
Gici Emporda manual
(version 1.0)

GICI group

Department of Information and Communications Engineering

Universitat Aut̀onoma Barcelona

http://www.gici.uab.es - http://gici.uab.cat/GiciWebPage/downloads.php

October 2011

1

Contents

1 Overview 3

2 Usage 4
2.1 Emporda’s Requirements 4

2.2 Emporda’s Execution Overview 4

3 Parameters 5
3.1 Application Parameters 5

3.2 Option File Parameters 7

3.2.1 Image Options 7

3.2.2 Algorithm Options 8

3.2.3 Weight Options 9

3.2.4 Entropy Coder Options 10

3.2.5 Block entropy Coder Options 11

4 Examples 12
4.1 Execution of Emporda 12

4.2 Parameters values 12

5 Notes 15

2

1 Overview

Emporda is an implementation of the future CCSDS Recommended Standard for multispectral and hyperspectral image

coding [1]. A small explanation about how this standard works, and some results about the performance it can achieve can

be seen in this article [2]. The CCSDS Recommended Standard we are referring to is still a draft or a red book (CCSDS

123.0-R-1) and it is expected that will become a CCSDS Recommended Standard this fall. The aim of Emporda is to

provide an implementation that can be useful as a reference in order to study how the algorithms work, to make a new

different implementation, or to check the performance the future Recommended Standard can achieve.

Emporda provides two different modes, the compression modeand the decompression mode. In the compression

mode, Emporda expects an image and generates a compressed file compliant with the Recommendation, as Emporda

follows exactly all the practices recommended in the documentation of the standard and it has not extra or additional

features. In the decompression mode, Emporda expects a compressed file, and recovers the original image. It must be

noticed that only files with the correct header can be decompressed.

There is an important amount of parameters that can be set forthe input image, the compression/decompression

algorithms and for the coding/decoding algorithms, so it isimportant to know which is their effect in the performance of

the algorithm. Emporda has by default the values of the parameters recommended in the documentation, but it is able to

read a configuration file overwriting these values. Because there are some combinations of values for the parameters that

are thought to be useful for some kind of images, we provide some files that can be used to set those parameters, and

different examples of how should be set some of them. Anotherimportant feature is that Emporda checks the values of

every parameter it receives and the combinations between them, to make sure that no errors are introduced. If there is an

error, Emporda shows the correct values for the parameters causing the error, so the error can be fixed easily.

The source code of Emporda is publicly available in the web page of the group http://www.gici.uab.cat/Emporda,

where some manuals can be found too. In order to guarantee thefree distribution, Emporda has the General Public

License (GNU GPL v3) of the Free Software Foundation (http://www.fsf.org/licensing/licenses/gpl.html).

Emporda has been designed to be modular, so the source code isquite flexible, allowing the user to easily integrate

some modules to other applications. The main modules are thecompressor, and the entropy coder. The implementation

has been done this way to be able to test the performance of thecompressor with other kind of encoders, and to make

other implementations of other algorithms using the entropy coder as the encoder.

For all of these, it can be noticed that Emporda is an implementation that can be useful as a reference to study how the

Recommended Standard is supposed to work, and as a guide to make an own implementation or testing the performance

of the algorithm, but it is has not been designed to be an efficient implementation, so for commercial purposes the GICI

group does not recommend the use of this application. However, all suggestions and comments about Emporda are wel-

come in order to improve the implementation, that can be reported to us (gici-dev@abra.uab.es).

We hope you enjoy it,

GICI group

3

2 Usage

2.1 Emporda’s Requirements

The following section explains Emporda’s requirements to be executed correctly, how it is been organized and how to use

it. However, next sections will made explicit the parameters usage and will introduce some useful examples.

The basic requirements to execute Emporda can be divided into hardware requirements and software requirements.

Hardware requirements are basically in terms of the system memory where it will be executed. Emporda needs an amount

of memory that depends on the geometry of image, in which order the image samples are handled and the number of bands

used in prediction. Anyway, Emporda does not load a whole image in memory, so an amount of ram close to the size of

the image that is going to be compressed or decompressed is far enough. This observation is basically done because we

consider that this program will work with images of big dimensions, and this can be problematic in some cases.

The input image is meant to be a three-dimensional array of signed or unsigned integer sample values. On software

requirements the development of it has been under a set of libraries from Java Standard Edition version 1.6. On testing

stage we have used J2SE version 1.6, so it means that it works over Java Runtime Environment 1.6 or higher. We suppose

that it can run as well with version 1.5.

2.2 Emporda’s Execution Overview

The program is organized in only one application called emporda.jar that is in dist directory. However, the source code

is provided too, so anyone can compile its own jar using the commandant. The program’s structure is modular which

provides scalability and it lets the code to be used in other projects easily. There are two basic modules, the predictor and

the coder which are used independently.

Table 1: Process of Emporda, in compression and decompression modes

To compress an image it is need the name of the image and its geometry (the number of bands, the number of rows

and the number of columns). The rest of parameters will depend on the user preferences. This parameters can be for

example,the name of the output file or the name of the options file (if needed). The following examples show how to use

them (if the option file name is not used, the parameter ”-f optionsFileName” must be removed):

$java -jar emporda.jar -i inputImageName -ig numberOfBands numberOfRows

numberOfColumns 3 0 -o outputFileName -c -f optionFileName -v

When decompressing, Emporda only needs the name of the compressed file and the name of the image that the

program will output. The following line specifies how to do it:

$java -jar emporda.jar -i inputCompressedFile -o outputImageDecompressed

-d -v

In case a larger amount of memory is needed to be used by the Java Virtual Machine (increase the heap size) it must

be add the parameter -Xmx{size} for increasing the maximum and/or -Xms{size} for increasing the minimum memory

allowed. For example, if the user wants to compress an image as in the first example but wants to have at least 2GB and a

maximum of 4GB of available memory:

4

$java -Xms2048m -Xmx4096m -jar emporda.jar -i inputImageName -ig

numberOfBands numberOfRows numberOfColumns 3 0 -o outputFileName -c -f

optionFileName -v

3 Parameters

3.1 Application Parameters

The following section explains each parameter for the command line execution. It must be noticed that there are two

different modes, compression and decompression modes, andthe parameters that can be set depend on the mode that is

going to be used. In the next frame the format of a table to showthe information about the parameters is shown.

Parameter: how the option can be set. There are two options:

-shortParameter or --longParameter

Type: type of the argument of the parameter

Mandatory: If the parameter is mandatory or it is not

Description: A small brief of the parameter

Default value: Default value set in the implementation

Parameter -h --help

Type

Mandatory No

Description Displays help and exits program.

Default Value

Parameter -c --compress

Type

Mandatory Yes for the compression mode

Description Compression mode for the input image

Default Value

Parameter -d --decompress

Type

Mandatory Yes for decompression mode

Description Decompression mode for the input file

Default Value

Parameter -i --inputImage

Type string

Mandatory Yes

Description The input file:

COMPRESSION: a 3D raw image

DECOMPRESSION: a 3D image compressed with the Standard

Default Value

5

Parameter -o --outputFile

Type string

Mandatory Yes

Description Output file

COMPRESSION: Output file name without extension

DECOMPRESSION: Output image file WITH extension

Default Value

Parameter -ig --inputImageGeometry

Type int int int int int

Mandatory Yes for compression mode.

Description Geometry of the input image. Parameters are:

1- zSize (number of image components)

2- ySize (image height)

3- xSize (image width)

4- data type. Possible values are:

1- unsigned int (1 byte)

2- unsigned int (2 bytes)

3- signed int (2 bytes)

5- 1 if 3 first components are RGB, 0 otherwise

Default Value

Parameter -so --sample-order

Type int

Mandatory No

Description In compression mode it sets in which order the pixels

of the image will be read. In decompression mode

sets in which order the pixels of the image recovered

will be saved. Its options are:

0.- BSQ

1.- BIL

2.- BIP

Default Value 0

Parameter -v --verbose

Type

Mandatory No

Description Displays information about the progress in the task done

by the program.

Default Value

Parameter -e --endianess

Type int

Mandatory No

Description In compression mode it sets which endianess is considered for the bytes

of every pixel of the image that will be read. In decompression mode sets

in which order the bytes of the pixels of the image recovered will be saved.

Its options are:

0.- big endian

1.- little endian

Default Value 0

6

Parameter -f --option-file

Type String

Mandatory No

Description Sets the option file name for the compression process.

Default Value

Parameter -dbg --debug-mode

Type

Mandatory No

Description Outputs useful information for debugging the application

Default Value

Parameter -format --pixel-format

Type int

Mandatory No

Description Sets the format in which the pixels of the

decompressed image will be stored

Values:

1.- byte

2.- unsigned integer (2 bytes)

3.- signed integer (2 bytes)

Default Value

3.2 Option File Parameters

The following sections defines and specifies how to use parameters that can be set in the Recommended Standard. These

options must be set in an option file. An example option file is distributed with the source code as a guide. The next frame

shows how the information of every parameter will be displayed in the next sections.

Parameter: ParameterValue

Range: Range of values allowed for the parameter

Description: A small brief of the parameter

Number of bits: Number of bits needed to store the parameter in the

header of the file

Default value: Default value set in the implementation

3.2.1 Image Options

These options are relative to the properties of the image that is going to be compressed, so they may be adapted for every

image that must be compressed.

Parameter DYNAMIC RANGE

Range [2, 16]

Description Maximum bit size for sample

Number of bits 4 bits

Default Value 16

Parameter SAMPLE ENCODING ORDER

Range [0, 1]

Description Encoding Order:

1 = BSQ, 0 = BI

Number of bits 1 bit

Default Value 1

7

Parameter SUBFRAME INTERLEAVING DEPTH

Range [1, numBands]

Description Subframe interleaving depth used in BI encoding.

Number of bits 16 bits

Default Value 0

Parameter OUTPUT WORD SIZE

Range [1,8]

Description Integer number of output words.

Number of bits 3 bits

Default Value 4

Parameter ENTROPY CODER TYPE

Range [0, 1]

Description Entropy coder type used:

0 Sample Adaptive, 1 Block Adaptive

Number of bits 1 bit

Default Value 0

3.2.2 Algorithm Options

Parameters that are used by the compressor for the prediction of a pixel.

Parameter NUMBER PREDICTION BANDS

Range [0, 15]

Description Number of prediction bands.

Number of bits 4 bits

Default Value 15

Parameter PREDICTION MODE

Range [0, 1]

Description Prediction mode that will be used by the compressor.

Full prediction mode uses information of the same band as thepixel that is going to

be predicted, not as in reduced prediction mode

0 Full prediction mode, 1 Reduced prediction mode

Number of bits 1 bit

Default Value 0

Parameter LOCAL SUM MODE

Range [0, 1]

Description The local sum mode tells the compressor

the size of the neighborhood that will be used to predict a pixel

0 Neighbor oriented sum mode, 1 Column oriented sum mode

Number of bits 1 bit

Default Value 0

Parameter REGISTER SIZE

Range [32, 64]

Description Size of the register 6 bits.

Number of bits 6 bits

Default Value 32

8

3.2.3 Weight Options

Options used by the compressor relative to the weight vector. This vector is used to maintain causal information about the

pixels of the image that have already been handled.

Parameter WEIGHT COMPONENT RESOLUTION

Range [4,19]

Description Resolution of weight components.

Number of bits 4 bits

Default Value 13

Parameter WEIGHT UPDATE SECI

Range [4,11]

Description Weight update scaling exponent change interval. Value is expressed aslog
2
.

Number of bits 4 bits

Default Value 6

Parameter WEIGHT UPDATE SE

Range [-6, WEIGHT UPDATE SEFP]

Description Weight update scaling exponent initial parameter .

Number of bits 4 bits

Default Value -1

Parameter WEIGHT UPDATE SEFP

Range [WEIGHT UPDATE SE, 9]

Description Weight update scaling exponent final parameter.

Number of bits 4 bits

Default Value 3

Parameter WEIGHT INITIALIZATION METHOD

Range [0, 1]

Description Weight initialization method:

0 Default Initialization, 1 Custom Initialization

Number of bits 1 bit

Default Value 0

Parameter WEIGHT INITIALIZATION TF

Range [0, 1]

Description Weight initialization Flag:

0 Not included in metadata, 1 Otherwise

Number of bits 1 bit

Default Value 0

Parameter WEIGHT INITIALIZATION RESOLUTION

Range if WEIGHT INITIALIZATION TABLE FLAG is 0→ [0]

Otherwise→ [3, WEIGHT COMPONENTRESOLUTION+3]

Description Weight initialization resolution.

Number of bits 5 bits

Default Value 0

9

Parameter WEIGHT INITIALIZATION TABLE

Range If this table is used, andQ = WEIGHT INITIALIZATION RESOLUTION

the values of this table must be in the range[−2Q, 2Q − 1]

Description This table has the values used in the custom

weight vector initialization.

Number of bits every elementQ bits

Default Value 0

3.2.4 Entropy Coder Options

Parameters relative to the entropy coder.

Parameter UNARY LENGTH LIMIT

Range [8, 32]

Description Unary length limit.

Number of bits 5 bits

Default Value 16

Parameter RESCALING COUNTER SIZE

Range [4, 9]

Description Rescaling counter size.

Number of bits 3 bits

Default Value 6

Parameter INITIAL COUNT EXPONENT

Range [1, 8]

Description Initial count exponent.

Number of bits 3 bits

Default Value 1

Parameter ACCUMULATOR INITIALIZATION TF

Range [0, 1]

Description Accumulator initialization table:

0 Not included in metadata, 1 Otherwise

Number of bits 1 bit

Default Value 0

Parameter ACCUMULATOR INITIALIZATION CONSTANT

Range [0, DYNAMIC RANGE-2]

Description Accumulator initialization constant.

Number of bits 4 bits

Default Value 5

Parameter ACCUMULATOR INITIALIZATION TABLE

Range If this table is used, andD = DYNAMIC RANGE

the values of this table must be in the range[0, 2D − 2]

Description This table has the values used in the sample

coding algorithm.

Number of bits every elementD bits

Default Value 0

10

3.2.5 Block entropy Coder Options

Parameters relative to the block entropy coder.

Parameter BLOCK SIZE

Range Must be 8 or 16

Number of bits 2 bits

Description Block Size.

Default Value 16

Parameter REFERENCE SAMPLE INTERVAL

Range [1, 256]

Description Reference sample interval.

Number of bits 12 bits

Default Value 1

11

4 Examples

4.1 Execution of Emporda

In this section we show some examples about how Emporda should be executed, and combinations of the different options

in the command line.

• See the help information

$ java -jar dist/Emporda.jar --help

• Compress the image in input-file and save the result in output-file using the values by default in the Emporda

implementation

$ java -Xmx1200m -jar dist/emporda.jar -i input-file \

-ig bands rows columns 3 0 -o output-file -c

• Compress the image in input-file and save the result in output-file, using a configuration file to overwrite some

values set by default.

$ java -Xmx1200m -jar dist/emporda.jar -i input-file \

-ig bands row columns 3 0 -o output-file \

-c -f option-file

• Compress the image in input-file and save the result in output-file with a information of the progress of the process,

using an option file.

$ java -Xmx1200m -jar dist/emporda.jar -i input-file \

-ig bands row columns 3 0 -o output-file \

-c -f option-file -v

• Decompress the image in input-file and save the result in output-file.

$ java -Xmx1200m -jar dist/emporda.jar -i input-file -o output-file -d

4.2 Parameters values

In this section we show some configuration of parameters thancan be used to compress some kind of images. These

options can be given to Emporda saving them in to a option file (option.txt) and using the option -f (-f option.txt). However,

if more accurate explanation of the parameters is necessary, the CCSDS Red Book [1] should be seen, due to all the

parameters and their effects in the compression and encoding processes are perfectly detailed.

• It is supposed that for hyperspectral uncalibrated images,the best results are achieved using the reduced prediction

mode and the column oriented sum mode:

PREDICTION_MODE = 1

LOCAL_SUM_MODE = 1

12

• It is supposed that for hyperspectral calibrated images, the best results are achieved using the full prediction mode

and the neighbor oriented sum mode:

PREDICTION_MODE = 0

LOCAL_SUM_MODE = 0

• It must be noticed when using the weight initialization table, that the bigger number that can be used in that table is

indicated by the weight initialization resolution. So if itis 6, then the range of the values is in the range[−32, 31].

• if the weight initialization table for a neighbor oriented mode with full prediction mode is used, then the table must

have the same number of lines as the number of bands of the image. And in every line, there must be as many

values as bands that can be used for the compression of the band plus three. For example:

PREDICTOR_METADATA_FLAG=1

WEIGHT_INITIALIZATION_RESOLUTION=4

WEIGHT_INITIALIZATION_METHOD=1

WEIGHT_INITIALIZATION_TF=1

NUMBER_PREDICTION_BANDS = 3

PREDICTION_MODE = 0

LOCAL_SUM_MODE = 0

WEIGHT_INITIALIZATION_TABLE = [0, 1, 2] \

[0, 1, 2, 3] \

[0, 1, 2, 3, 4] \

[0, 1, 2, 3, 4, 5] \

[0, 1, 2, 3, 4, 5] \

.

.

.

[0, 1, 2, 3, 4, 5]

• if the weight initialization table for a reduced predictionmode is used, then the table must have the same number

of lines as the number of bands of the image. And in every line,there must be as many values as bands that can be

used for the compression of the band. For example:

PREDICTOR_METADATA_FLAG=1

WEIGHT_INITIALIZATION_RESOLUTION=4

WEIGHT_INITIALIZATION_METHOD=1

WEIGHT_INITIALIZATION_TF=1

NUMBER_PREDICTION_BANDS = 3

PREDICTION_MODE = 1

WEIGHT_INITIALIZATION_TABLE = [] \

[0] \

[0, 1] \

[0, 1, 2] \

[0, 1, 2] \

.

.

.

[0, 1, 2]

13

• if the accumulator initialization table is used, then the accumulator initialization constant must be 0. It must be

noticed too, that is difficult to know which values to use in the accumulator initialization table to achieve good

compression results. The accumulator initialization table is a list with a value for every band of the image

ENTROPYCODER_METADATA_FLAG = 1

ACCUMULATOR_INITIALIZATION_TF = 1

ACCUMULATOR_INITIALIZATION_CONSTANT = 0

ACCUMULATOR_INITIALIZATION_TABLE = 0 1 2 3 4 5 6 7 8 \

9 10 11 12 13 14 12 0 \

.

.

.

9 10 11 12 13 14 12 0 \

• Observation: all values for the parameters used in the compression process are stored in the header of the generated

file, except for the WEIGHTINITIALIZATION TABLE and the ACCUMULATORINITIALIZATION TABLE

which are optional. This means that if any of these tables arenot stored in the header of the generated file, the

option file used in compression is needed in the decompression process. If an option file is used in decompression,

only the tables mentioned above can be read, due to all other parameters are already stored on the header of the

generated file. As an example, if we set:

ENTROPYCODER_METADATA_FLAG = 1

ACCUMULATOR_INITIALIZATION_TF = 0

ACCUMULATOR_INITIALIZATION_CONSTANT = 0

ACCUMULATOR_INITIALIZATION_TABLE = 0 1 2 3 4 5 6 7 8 \

9 10 11 12 13 14 12 0 \

.

.

.

9 10 11 12 13 14 12 0 \

Then the ACCUMULATORINITIALIZATION TABLE is not stored in the header of the generated file. So the

same option file must be used in decompression. Compression would be:

$ java -Xmx1200m -jar dist/emporda.jar -i input-file \

-ig bands row columns 3 0 -o compressed-file \

-c -f option-file -v

And decompression could be achieved with:

$ java -Xmx1200m -jar dist/emporda.jar -i compressed-file \

-o output-file -d -f option-file -v

14

5 Notes

If you need further assistance, you might want to contact us directly.

References

[1] Consultative Committee for Space Data Systems (CCSDS),Lossless Multispectral & Hyperspectral Im-

age Compression CCSDS 123.0-R-1, ser. Red Book (draft). CCSDS, May 2011. [Online]. Available:

http://public.ccsds.org/sites/cwe/rids/Lists/CCSDS%201230R1/Attachments/123x0r1.pdf

[2] Jose Enrique Śanchez, Estanislau Augé, Josep Santaló, Ian Blanes, Joan Serra-Sagristà, Aaron Kiely, “Review and

implementation of the emerging ccsds recommended standardfor multispectral and hyperspectral lossless image

coding,”CCP 2011, Proceedings, vol. 1, june 2011.

15

